SWCX Contribution to the Soft X-Ray Background Using X-LEAP Data

Zeyang Pan
National Astronomical Observatory, CAS (NAOC)
zypan@bao.ac.cn
Collaborators: Zhijie Qu, Joel Bregman, Jifeng Liu

1. MW Hot Gas and SWCX in Soft X-Ray Background
2. Complex Nature of SWCX Emission
3. The XMM-Newton Line Emission Analysis Program (X-LEAP)
4. SWCX Variations in Dataset and Correlations to SW Ion Data Measured by ACE
1. MW Hot Gas and SWCX in Soft X-ray Background

MW Hot Gas (T > 10^6 K) Emission:

- **Thermal Emission:** continuum (Bremsstrahlung)
- **Line Emissions:** O VII, O VIII, and Fe-L lines (0.56, 0.65, 0.7-1.0 keV; collisional ionization)
- **Coverage:** whole sky; faint

SWCX Emission:

- **Highly-Charged Ions:** O7+, O8+, and Fe+;
- **Line Emissions:** O VII, O VIII, and Fe-L lines (SWCX)
- **Coverage:** Whole sky
- **Nature:** Complicated
2. Complex nature in SWCX emission — Regions & Variations

Region: Earth’s Exosphere (H & He)

- **Variability**: Varies over days; sensitive to SW flux (e.g., Cravens 97; Freyberg 98)

Region: Within the Heliopause (Neutral ISM)

- **Variability**: Varies over years with lower amplitude; latitude-dependence expected;
3. The XMM-Newton Line Emission Analysis Program (X-LEAP)

Need: Requires extensive, long-term line emission data in soft X-rays

Opportunity – MOS/XMM-NEWTON: 1. > 22 years; 2. deep observations with large FOV.

Goal: To study variations in SWCX & the MW hot gas emission, using all usable MOS/XMM images

Method:

Dataset:
- **5470 measurements** (~3% sky)
- Largest & machine-readable (X-LEAP I)
- Long exposure (~ 20 ks) & Low contaminations
4.1. Long-Term & Spatial Variations Seen in X-LEAP data

- Highly correlates with solar activity
- Contributes \(\sim 30\% \) to the observed intensity in average
- Includes both \(I_{\text{helio}, \text{SWCX}} \) and \(I_{\text{mag}, \text{SWCX}} \)

- \(\text{O VII} \) intensities are higher at high latitudes
- Varying solar wind properties at different latitudes
4.2.0. SWCX Emission Intensity

The X-ray flux in a given spectral line:

\[I_{SWCX} = \frac{1}{4\pi} \int_0^s n_M(s) n_{Xq^+}(s) V(s) \sigma_{M,Xq^+}(V) Y_{Xq^+,j}(V) \, ds \]

(Cravens+ 97)

Assume constant neutral gas density:

\[I_{OVII,SWCX} \propto n_{O^{7+}} v_{O^{7+}} \] (O7+ flux) at where the CX happens

SWICS/ACE:

- Measures SW ion properties at L1 (e.g. vH+, nH+, HetoO, vC5+, etc.)
- Delay time (τ): ~ 1 h to exosphere; >1 year to heliopause
- Less reliable ion data after 2012, except H+ measurements
4.2. Correlations between Long-term SWCX and SW ion data

Most linearly correlated to He2+ number density

nHe2+ shows stronger correlation than O7+ flux
4.2. Correlations between Long-term SWCX and SW ion data

- Cumulative fraction of SWCX emission (red)
- ~80% SWCX <20 au; delay time < 3 months
- No obvious time-delay between X-ray and ACE data
4.3.0. Seeing Short-Term Variations after Minimizing MW Contribution

- MW hot gas emission
- $I_{\text{obs. O VII}}$ vs. O7+ flux ($t - 1$ h)?

Remove MW emission:
- Intensity differences in observational pairs $< 2^\circ$

$$
\Delta I_{\text{obs, O VII}}(t_1, t_2)
$$

- $A * \Delta \text{Flux} (t_1 - \tau_{\text{mag}}; t2 - \tau_{\text{mag}})$ differences in mag
- $B * \Delta \text{smoothed Flux} (t_1 - \tau_{\text{helio}}; t2 - \tau_{\text{helio}})$ differences in helio SWCX

- MW emission $< 2^\circ$ are considered negligible
 (Kaaret+ 20; Qu+ 24)
4.3. Short-Term Variation Seen in X-LEAP data

\[\Delta I_{\text{obs, O VII}}(t_1, t_2) \]

\[A \ast \Delta \text{Flux (} t_1 - 1 \text{ h; } t_2 - 1 \text{h)} \]

\[B \ast \Delta \text{smoothed Flux (} t_1 - \tau_{\text{helio}}; t_2 - \tau_{\text{helio}}) \]

differences in mag SWCX
differences in helio SWCX

- Linear correlation between X-ray and O7+ flux differences
- Residuals

- delay time \(\sim 2 \) hours from CCF; expected \(> 1 \)h
- 2h interval?
5. An Empirical Model to Estimate SWCX Emissions (Before 2012)

\[I_{\text{obs, O VII}}(t) = A \times O^{7+} \left(t - \tau_{\text{mag}}\right) + B \times n_{\text{He}^{2+}} \left(t - \tau_{\text{helio}}; \sigma = 6 \text{ m}\right) + \text{Const.} \]

- An estimation of the SWCX strength at certain \(t \)

Future Improvements:
- Spatial variations (SW ion and neutral gas distributions across latitudes)
- \(\sigma_{H, O^{7+}}(V) \)
Thank you 😊
SWICS:
- Installed on ACE satellite
- Measures SW ion properties at L1 (e.g. H+ flux)

- O VII line intensity increases with proton flux
- Evidence of short-term variations due to $I_{\text{mag}, \text{SWCX}}$

Observation sets pointing at same directions

Pan+ 24
Goal: To study the short/long-term & spatial variations in SWCX using all usable MOS images

Method:

1. XMM-NEWTON X-ray Telescope: 1. deep observations with large FOV; 2. > 22 years

Need: requires extensive, long-term soft X-ray line emission data

- 5418 measurements (~3% sky)
- Long exposure (~20 ks) & Low contaminations
- Machine-readable

O VII Intensity Measurements
Supplementary Materials

\[F_{O^7+} = n_{He} v_{He} \frac{n_O}{n_{He}} \frac{n_{O^7+}}{n_O} \]

smoothed \(f(t, \sigma = 6 \text{ m}) = \text{np.median} (f[t - \sigma, t + \sigma]) \)
Solar wind ions can capture electrons from neutral atoms, producing X-ray photons (SWCX).

\[
\text{e.g.} \quad O^{+7} + H \rightarrow O^{+6}^* + H^+ \\
\rightarrow O^{+6} + H^+ + h\nu
\]

Local Hot Bubble (I_{LHB})

\[T \sim 10^6 \text{ K} \]
\[n_e = 4 \times 10^{-3} \text{ cm}^{-3} \]

(e.g., Liu+ 16; Yeung+ 23)

Supplementary Materials
Supplementary Materials

Ulysses Spacecraft (1990-2009)
SWICS/Ulysses

Kuntz 2019