

High Resolution Spectroscopy of Jupiter's X-ray Emissions

A. D. Wibisono¹, G. Branduardi-Raymont^{2, 3}, A. J. Coates^{2, 3}, C. M. Jackman¹

1. School of Cosmic Physics, Dunsink Observatory, DIAS

- 2. Mullard Space Science Laboratory, UCL
- 3. Centre for Planetary Science at UCL/Birkbeck

Jupiter's Magnetosphere

NASA/CXC/M.Weiss

Io Plasma Torus

NASA/JHU/APL/SwRI

Io's volcanoes – source of neutral SO₂
Io plasma torus – S and O ions
Solar wind – Fe, Mg, Si, N, Ne, O, S, C ions

Solar wind

Jupiter's Aurorae

NASA/SWRI/G.R. Gladstone et al

Jupiter X-ray Studies

Metzger et al., 1983 SWRI/H. Waite/G.R. Gladstone et al., Wibisono et al., Mori et al., 2022 Numazawa et al., 2019 Gladstone 2002 2020

- X-ray auroral emissions at the poles
- Elastically scattered solar X-rays (+some fluorescence) off the disk
- Radiation belts also scatters solar X-rays
- Fluorescence from Galilean moons & Io Plasma Torus

The X-ray Aurora

The EPIC-pn and RGS detectors

EPIC-pn	RGS
0.2 – 10 keV (62 – 1.24 Å)	0.54 – 0.95 keV (23 – 13 Å) (for Jupiter studies)
Larger effective area	Smaller effective area
Lower spectral resolution	Higher spectral resolution
X-ray imaging, moderate resolution spectroscopy	High resolution spectroscopy
The energy, time and position on the detector is recorded for every photon	Dispersive spectrometer
X-rays	EPIC-pn RGS

Jansen et al., 2001

Internal and External Plasma Population Spectral Models

Sources of Jupiter's Aurorae – External and Internal Sources

Solar wind fit

logenic fit

Dunn et al., 2020

Jupiter Equatorial Emissions

Jupiter As A Solar Monitor

۰Á

ō

N

Normali

<u>Date</u>	<u>Exposure time</u>	(ks)
Nov 2003	122	
Nov 2003	134	
Apr 2014	44	
Apr 2014	46	
Jun 2017	101	
Jul 2017	140	
Jul 2017	100	
Jul 2018	22	
Aug 2018	48	
Sep 2019	135	
Sep 2019	135	١
Sep 2019	136	
Apr 2020	140	
Oct 2020	135	~
May 2021	127	e
2 Jun 2021	79	
Jun 2021	131	

Wibisono et al., 2020

RGS spectra extracted from entire disk

O VII and O VIII are from the aurorae; Fe XVII is from the disk

Jupiter RGS spectra and the solar cycle

Fitting Jupiter RGS spectra

Models to fit disk and auroral CX emissions Widths of broad OVII and **OVIII** lines indicate O ions had speeds of +/- 5000 km s⁻¹ and energies of 2.5 MeV

Branduardi-Raymont et al., 2007

Summary

- Jupiter's X-ray emissions are highly variable between observations and even planetary rotations
- Analysing Jupiter RGS spectra requires exposures of at least 100 ks (or for Jupiter to be hit by intense solar activity)
- Stacking spectra can wash out unique details from individual spectra
- EPIC-pn and RGS spectra show sulfur ion emission lines logenic in origin

Email: wibisono@cp.dias.ie