Improving Theoretical Charge Exchange Cross Sections for Astrophysical X-ray Emission Modeling: Limitations and Future of Kronos

Phillip C. Stancil

Department of Physics and Astronomy and the Center for Simulational Physics

University of Georgia

Collaborators

Renata Cumbee

GSFC

Patrick Mullen

Mike Fogle (exp)

AUBURN UNIVERSITY

Ruihan Wang

Lyons

The University of Georgia

lan

Drury

Jeff Nolte

Sean **McIlvane** URA/Sandia Lior Shefler

Yong Funding: Wu NASA APRA **XRISM Guest Scientist**

David

Schultz

Outline

- Introduction
- OX Theoretical Methods Overview
- The Kronos Database/Spectra Model
- Other CX Databases
- Examples importance of Double Capture
- Summary
- The Future

CX Cross Section Theory

- Inc., I., L., and S-resolved cross sections are needed for ~10 eV/u to ~10 MeV/u
- Various methods used:
 - Lattice time-dependent Schroedinger equation (LTSE)
 - Quantum molecular-orbital close-coupling (QMOCC)
 - Atomic-orbital close-coupling (AOCC)
 - Classical-trajectory Monte Carlo (CTMC)
 - Multichannel Landau-Zener (MCLZ)

Computational Effort

Accuracy

Multichannel Landau-Zener

- Janev, McDowell, & Bransden (1983); Butler & Dalgarno (1980); Gershstein (1963)
- N-channels almost unlimited
- LZ parameters: 1) avoided-crossing distances (R_x) , 2) potential energy difference at $R_x [\Delta U(R_x)]$, and 3) the difference in diabatic potential slopes at $R_x [F(R_x)]$
- \odot R_x from asymptotic atomic energies (NIST) and IPs
- $F(R_x)$ model potential functions w/polarizabilities
- Problem: bare-ion cases give only <u>n-resolved cross</u> <u>sections</u> → *l*-distribution functions must be used

Multichannel Landau-Zener

• Largest uncertainty from $\Delta U(R_x)$

Various models for ΔU(R_x): one-electron (Olson-Salop 1977), multi-electron (Tauljberg 1986), low-charge (Butler-Dalgarno 1980)

I-distributions from CX

Model /-distribution functions often used:

- I. Low-energy (Landau-Zener) (< 1 keV/u?) →</p>
- $\frac{(2l+1)(n-1)!}{(n+l)!(n-l-1)!}$

(2l+1)

 n^2

- ●2. Low-energy II (< 1 keV/u?)
- 3. Separable (< 1keV/u?)</p>
- ●4. Flat (even) (1-10 keV/u?) all / cross sections equal
- ●5. Statistical (>10 keV/u?) →
- <u>Required for bare-ion MCLZ calculations only</u> (H-like emission)

The Kronos CX Database

(sites.physast.uga.edu/ugacxdb)

• First version (2017-2019):

- Database of Single Electron Capture (SEC) cross sections, ion energies and A-values (NIST, analytical, and Autostructure), and cascade/X-ray spectrum model
- Mostly <u>MCLZ</u> results, but also QMOCC, AOCC, CTMC, "recommended"
- Solons: H-like <u>C-Zn</u>, He-like <u>C-Si</u>
- Neutral targets: H, He, H₂, N₂, H₂O, CO, CO₂, some cross sections for O, OH, Kr

Mullen et al. 2016, ApJS, 224, 31; 2017, ApJ, 844, 7 Cumbee et al. 2019, ApJ 852, 7

Current Kronos (v3.1)

The Kronos CX Database

New version (Fall 2024):

- He-like ions (P-Zn)
- All Li-like ions (C-Zn)
- Additional targets: CH₄, NH₃
- Multielectron ions: C, O, Ne, S, Mg, and Fe
- Complex atomic structure: n, l, L, 2S+1, seniority
- GUI
- More literature data
- Data provenance

Next Kronos

Not pictured: Lior Shefler Sean McIlvane

Kronos GUI

Beta testing in progress

Jupyter notebooks in progress - comparison to ACX, SPEX, NIST thermal spectra

Kronos Details

- What Kronos does:
 - MCLZ: I-distribution models for H-like ions only
 - 2+ electrons, no /-distribution needed
 - MCLZ, QMOCC: no assumed triplet-singlet ratio
- What Kronos doesn't do:
 - Fine-structure-resolved cross sections (coming soon)
 - Multiple electron capture (only single electron capture)
- Coming soon (2 NASA APRA grants):
 - QMOCC pipeline calculations (nearly exact 1-electron)
 - Two-electron AOCC code
 - Benchmarking to EBIT and other measurements
 - Machine learning optimization to improve MCLZ

CX Databases

- AtomDB: AtomDB Charge Exchange (ACX v1) model:
 - Classical over-the-barrier (COB) model, 2 parameters: q, IP of neutral
 - Predicts total CX cross section, dominant n; no velocity dependence
 - I-distribution models, triplet-singlet ratio = 3
 - ACX v2: ingested Kronos data, ACX v1 for systems not in Kronos

• SPEX:

- Fits of existing experimental data
- Ingested Kronos data
- Service Atomic Code (FAC)
 - Ingested Kronos data
- Also xstar and Cloudy -> mostly total rate coefficients

Examples

X-ray Spectra for C⁶⁺ + H comparison

Recommended: Janev et al. 1993, ADNDT, 55, 201

X-ray Spectra for O⁸⁺ + H comparison

X-ray Spectra for Ne¹⁰⁺ + H comparison

CTMC: Schultz & Krstic (1997); AOCC: Cumbee et al. (2016)

X-ray Spectra for C⁶⁺ + H₂ compared to experiment

Experiment: Fogle et al. 2014, PRA, 89, 042705

X-ray Spectra for Mg¹²⁺ and Mg¹¹⁺ + H₂ compared to experiment

Experiment: Betancourt-Martinez et al. 2014, PRA, 90, 052723

Double Electron Capture? Single Electron Capture (SEC) $Mg^{12+} + H_2(1s^2) \rightarrow Mg^{11+}(n\ell) + H_2^+(1s)$ 0 Double Electron Capture (DEC) $Mg^{12+} + H_2(1s^2) \to Mg^{10+}(n'\ell', n''\ell'') + 2H^+$ Double Capture Autoionization (DCAI) or True DC (TDC) $\rightarrow \mathrm{Mg}^{11+}(n\ell) + e^{-} \rightarrow \mathrm{Mg}^{10+}(n'\ell', n'''\ell'') + h\nu$ • SEC + DCAI = $q_{q}q_{-1}$ Measurement is of q,q-1

Need Autoionization and Radiative Decay rates to determine branching ratios

Ne¹⁰⁺ + He Spectrum Contributions

Photon energy (eV)

Ne¹⁰⁺ + He Double Capture Processes

Ne¹⁰⁺ + He Empirical Potentials

Mg¹¹⁺ and Mg¹²⁺ discrepancies

- DCAI tends to populate lower n-values than SEC
- Suppresses high-n transition lines
- He-like ion measurement appears to have larger triplet population
- Should non-adiabatic coupling depend on spin?
- Topics to explore with joint Clemson-Auburn-GSFC-Livermore-UGA measurements focused on double-capture

Li-like S CX emission MCLZ 1 keV/u

Summary

Reviewed Kronos database for CX X-ray emission - single electron capture only

- Most cross section data obtained with MCLZ method
- Some QMOCC, AOCC, CTMC, and prior recommended cross sections
- Includes more than 300 collision systems
- Dominant uncertainty in the potential difference at the avoided-crossings (R_x)

The Future

- New Kronos release coming soon
- Moving to multi-electron systems w/ MCLZ
- New QMOCC and AOCC codes in development
- Benchmarking to measurements
- Optimize LZ parameters with machine learning

Double capture and fine-structure