A comparison of two models

Common Model Parameters
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Can x-ray emission from Saturn’s magnetosheath be detected?

Saturn’s magnetosphere is filled with neutral particles sourced from the cryovolcanic moon Enceladus that form an extended cloud

 Charge exchange between Enceladus-genic neutrals and heavily stripped solar wind ions occurs within the magnetosheath
 Apply two models to simulate charge exchange rates within the magnetosheath, testing the viability of a SMILE-like SXI imaging the

interaction between Saturn and the solar wind

» Model 1 uses MHD simulation data to describe the properties of the magnetosheath.

Magnetopause location

* Magnetosheath lies between the bow shock and magnetopause
 Bow shock varies between Model 1 and Model 2
Use Kanani at al. (2010) magnetopause model based on Cassini data:
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Model 1 Specifics and Results

Magnetosheath ion densities and velocities 4 - “““ | | | | | [0
from 3D MHD simulation (Jia et al., 2012) ”“““H”illi nH_|_
* Bow shock location defined by i
discontinuity in magnetic field
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Shorter integration times required to pick out magnetospheric variability — need a closer or larger detector!

., Two imaging methods explored:

VER calculated for each point to

create spatial map:

* Significant emission region likely
exists; highest intensity at nose
Neutral density is strongest predictor
of VER; Hydrogen contributes most as
more widely distributed

Collision velocity plays reduced role;
inflates VER at flanks

* lon density mostly stable across region
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Imaging the Region

Both models assume a SMILE-like instrument at 303 R to determine if the magnetosheath can be imaged in a reasonable timeframe
SMILE SXI field of view (FOV): 15.5° X 26.5° (Sembay et al., 2016).

* LOS directly in front of region
* Approximate region as point source
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Conclusions & Future Work

Both models confirm the likely existence of a significant emission region; brightest
emission is at the nose and reduced emission is present at the flanks:

 Neutral density is the greatest predictor of emission rate, and strongly influences

spatial distribution of VER

* Higher collision velocity enhances emission rate e.g. at flanks
e Overall emission rates likely underestimate for physical system

VER comparable under fast and slow solar wind conditions
* Fast wind leads to a higher peak emission rate, but concentrated spatially
* Slow winds results in broader emission region across magnetosheath at a lower

emission rate

* Impose Went et al. (2011) bow shock
* Assume magnetosheath density of ny, = 0.1 cm™ (Sergis et al., 2013)
e Consider fast and slow wind conditions

* Slow (vgyw =400 km s, Dp=0.02656 nPa) and fast (vgyy = 800 km s, Dp=0.10624

* VER peaks at the nose of the magnetopause for slow and fast winds
* VER on the order of 1011 photon cm3 s

» Model 2 uses empirical models to explore solar wind driving of x-ray emission

Neutral density

Enceladus’ geysers provide neutral H,O- 1754 | A
based material for system 1501 % on
Expelled water disassociates into OH, O,
and H, diffusing into extended clouds
Density extrapolated from models
informed by Cassini data (e.g. Smith &
Richardson, 2021)

Assume H-like cross sections for all species
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(BOdEWitS et aI., 2007) Radial Distance [Rs]
Cloud ay, b, c
H 5.46 x 10% | 1.66 x 101 0
O 9.57 x 10% | 1.69 x 10~} 2.77
OH |[280x10% | 1.98x10""' | 355 x 10"

Model 2 Specifics and Results

e Use O’* abundances from Whittaker & Sembay (2016)

nPa) solar wind considered; Dynamic pressure given by Dp = nmpvszw
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* Higher for fast wind — peak emission ~2 X that of slow wind
* Compressed magnetosphere leads to more neutral material within
magnetosheath and larger v,.,;

* Scale height of +1 R imposed

jzj‘; » Different SXI configurations
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Magnetosheath imaging possible for current generation of SXI instruments,

e.g. SMILE:

* Integration times feasible for broad characterisation of magnetosheath

* Under point source approximation, flux is too low to image short-period
variable behaviour; moving close enough restricts viewing picture, but
allows spatial resolution

Future work to develop the model should include:

* Consideration of non-Enceladus neutral sources

* Implementation of more species-specific cross-sections
* Apply ray tracing analysis for imaging
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