Soft x-ray emission from Saturn's magnetosheath: A comparison of two models Patrick Rogan^{*†1}, Dan Naylor^{†1}, Licia Ray¹, Todd Smith², Will Dunn³, Ali Sulaiman⁴, Xianzhe Jia⁵

 \boldsymbol{K}

1: Lancaster University Department of Physics, 2: Johns Hopkins University Applied Physics Laboratory, 3: UCL Department of Physics and Astronomy, 4: University of Minnesota, 5: University of Michigan * : Speaker, †: Corresponding authors: p.rogan@lancaster.ac.uk & d.naylor@lancaster.ac.uk

Assume H-like cross sections for all species (Bodewits et al., 2007)

- Impose Went et al. (2011) bow shock
	- Assume magnetosheath density of $n_{\rm H+}$ = 0.1 cm⁻³ (Sergis et al., 2013)
	- Consider fast and slow wind conditions
		- Use O⁷⁺ abundances from Whittaker & Sembay (2016)
	- Slow (v_{SW} = 400 km s⁻¹, D_P = 0.02656 nPa) and fast (v_{SW} = 800 km s⁻¹, D_P = 0.10624 nPa) solar wind considered; Dynamic pressure given by $D_P = n m_p v_{sw}^2$

Model 1 Specifics and Results Model 2 Specifics and Results

20

 -20

 $-8\frac{1}{20}$

Conclusions & Future Work

Magnetopause location

- Fast wind leads to a higher peak emission rate, but concentrated spatially
- Slow winds results in broader emission region across magnetosheath at a lower emission rate

informed by Cassini data (e.g. Smith & Richardson, 2021)

- Magnetosheath lies between the bow shock and magnetopause
- Bow shock varies between Model 1 and Model 2
- Use Kanani at al. (2010) magnetopause model based on Cassini data:
- **Neutral density**
- Enceladus' geysers provide neutral H_2O based material for system
- Expelled water disassociates into OH, O, and H, diffusing into extended clouds
- Density extrapolated from models

 $r_{MP}\left(\theta\right)=r_0$ 2 $1 + \cos \theta$

 a_2 | 0.2 a_3 | 0.73 a_4 | 0.4

 \vert 10.3

 n_{H+}

20

 -0.35

 -0.30 –

 $\left[\begin{array}{ccc} 0.25 & \frac{0}{4} \end{array}\right]$

)
- 0.20 음

 $\begin{array}{|c|c|c|c|c|} \hline \text{-} & 0.15 & \text{5} \end{array}$

 \vdash 0.10

25

 r_0 magnetopause nose distance, D_p dynamic pressure, $r_0 = a_1 D_P^ -a_2$, $K = a_3 + a_4 D_P$

- **Collision velocity** plays reduced role; inflates VER at flanks
- **Ion density** mostly stable across region
- \mathbb{Z}_2 • VER **peaks at the nose** of the magnetopause for slow and fast winds • VER on the order of 10⁻¹¹ photon cm⁻³ s⁻¹
	- **Higher for fast wind** peak emission \sim 2 \times that of slow wind
	- Compressed magnetosphere leads to **more neutral material within magnetosheath** and larger v_{rel}

Both models confirm the likely existence of a **significant emission region**; brightest emission is at the nose and reduced emission is present at the flanks:

Magnetosheath ion densities and velocities $_{40}$ from 3D MHD simulation (Jia et al., 2012)

- Bow shock location defined by discontinuity in magnetic field
- Dynamic pressure calculated from flow velocity; magnetopause imposed
- Assume sheath ion temperature of 300 eV (Thomsen et al., 2018)
- n_H , n_O , n_{OH} calculated at each point

- Neutral density is the greatest predictor of emission rate, and strongly influences spatial distribution of VER
- Higher collision velocity enhances emission rate e.g. at flanks
- Overall emission rates likely underestimate for physical system

VER comparable under fast and slow solar wind conditions

Can x-ray emission from Saturn's magnetosheath be detected?

- Saturn's magnetosphere is filled with neutral particles sourced from the cryovolcanic moon Enceladus that form an extended cloud
- Charge exchange between Enceladus-genic neutrals and heavily stripped solar wind ions occurs within the magnetosheath
- Apply two models to simulate charge exchange rates within the magnetosheath, testing the viability of a SMILE-like SXI imaging the interaction between Saturn and the solar wind
	- ➢ **Model 1** uses **MHD simulation data** to describe the properties of the magnetosheath.
- Image credit: NASA/JPL/JHUAPL *image credit: NASA/JPL/JHUAPL image credit: NASA/JPL/JHUAPL image 2 uses empirical models to explore solar wind driving of x-ray emission*

arameters $\mathbf{\Omega}$

Volumetric emission rate (VER),

 $P = \sum_n n_n n_q v_{\text{rel}} \sigma_{sqn} b_{sqj}$ $n_n =$ Neutral Density $n_q =$ Ion Density σ_{sqn} = Cross Section σ_{sqi} = Branching Ratio v_{rel} = Collision Velocity

VER calculated for each point to

 X_{KSM}/R_S

- create spatial map:
	- **Significant emission region** likely exists; highest intensity at nose

• **Neutral density** is strongest predictor of VER; Hydrogen contributes most as more widely distributed

15

Lancaster

Imaging the Region

Both models assume a SMILE-like instrument at 303 R_S to determine if the magnetosheath can be imaged in a reasonable timeframe SMILE SXI field of view (FOV): $15.5^{\circ} \times 26.5^{\circ}$ (Sembay et al., 2016).

Magnetosheath imaging possible for current generation of SXI instruments, e.g. SMILE:

 $y(R_S)$ $y(R_S)$ -20 20 Y_{KSM}/R_S

Shorter integration times required to pick out magnetospheric variability – need a closer or larger detector!

- Integration times feasible for broad characterisation of magnetosheath
- Under point source approximation, flux is too low to image short-period variable behaviour; moving close enough restricts viewing picture, but allows spatial resolution

Future work to develop the model should include:

- Consideration of non-Enceladus neutral sources
- Implementation of more species-specific cross-sections
- Apply ray tracing analysis for imaging