Soft x-ray emission from Saturn's magnetosheath: A comparison of two models Patrick Rogan^{*†}, Dan Naylor[†], Licia Ray¹, Todd Smith², Will Dunn³, Ali Sulaiman⁴, Xianzhe Jia⁵

1: Lancaster University Department of Physics, 2: Johns Hopkins University Applied Physics Laboratory, 3: UCL Department of Physics and Astronomy, 4: University of Minnesota, 5: University of Michigan * : Speaker, +: Corresponding authors: p.rogan@lancaster.ac.uk & d.naylor@lancaster.ac.uk

Can x-ray emission from Saturn's magnetosheath be detected?

- Saturn's magnetosphere is filled with neutral particles sourced from the cryovolcanic moon Enceladus that form an extended cloud
- Charge exchange between Enceladus-genic neutrals and heavily stripped solar wind ions occurs within the magnetosheath
- Apply two models to simulate charge exchange rates within the magnetosheath, testing the viability of a SMILE-like SXI imaging the interaction between Saturn and the solar wind
 - **Model 1** uses **MHD simulation data** to describe the properties of the magnetosheath.
 - **Model 2** uses empirical models to explore **solar wind driving** of x-ray emission

- 0.35

· 0.30 _

0.25

nsity -

- 0.15 -

- 0.10

25

arameters Δ

Magnetopause location

- Magnetosheath lies between the bow shock and magnetopause
- Bow shock varies between Model 1 and Model 2
- Use Kanani at al. (2010) magnetopause model based on Cassini data:

Neutral density

- Enceladus' geysers provide neutral H_2O based material for system
- Expelled water disassociates into OH, O, and H, diffusing into extended clouds
- Density extrapolated from models

Lancaster University

 $r_{MP}\left(\theta\right) = r_0 \left(\frac{-}{1 + \cos\theta}\right)$

*a*₂ |0.2 *a*₃ |0.73 $a_4 | 0.4$

 n_{H^+}

20

10.3

 r_0 magnetopause nose distance, D_P dynamic pressure, $r_0 = a_1 D_P^{-a_2}, \quad K = a_3 + a_4 D_P$

Volumetric emission rate (VER), P

 $P = \sum_{n} n_n n_q v_{rel} \sigma_{sqn} b_{sqj}$ $n_n = Neutral Density$ $n_q =$ lon Density $\sigma_{sqn} =$ Cross Section $b_{sqj} =$ Branching Ratio $v_{rel} =$ Collision Velocity

Model 1 Specifics and Results

20

-20

- 8 --1--1-

Magnetosheath ion densities and velocities 40 from 3D MHD simulation (Jia et al., 2012)

- Bow shock location defined by discontinuity in magnetic field
- Dynamic pressure calculated from flow velocity; magnetopause imposed
- Assume sheath ion temperature of 300 eV (Thomsen et al., 2018)
- n_H, n_O, n_{OH} calculated at each point

informed by Cassini data (e.g. Smith & Richardson, 2021)

Assume H-like cross sections for all species (Bodewits et al., 2007)

Cloud	a_n	b_n	c
Η	$5.46 imes 10^2$	1.66×10^{-1}	0
Ο	9.57×10^2	1.69×10^{-1}	2.77
OH	2.80×10^2	1.98×10^{-1}	3.55×10^{-1}

Model 2 Specifics and Results

- Impose Went et al. (2011) bow shock
 - Assume magnetosheath density of $n_{\rm H+} = 0.1 \, {\rm cm^{-3}}$ (Sergis et al., 2013)
 - Consider fast and slow wind conditions
 - Use O⁷⁺ abundances from Whittaker & Sembay (2016)
 - Slow (v_{SW} = 400 km s⁻¹, D_P = 0.02656 nPa) and fast (v_{SW} = 800 km s⁻¹, D_P = 0.10624 nPa) solar wind considered; Dynamic pressure given by $D_P = nm_p v_{sw}^2$

- create spatial map:
 - Significant emission region likely exists; highest intensity at nose

 X_{KSM}/R_S

VER calculated for each point to

Neutral density is strongest predictor of VER; Hydrogen contributes most as more widely distributed

15

- **Collision velocity** plays reduced role; inflates VER at flanks
- **Ion density** mostly stable across region
- VER peaks at the nose of the magnetopause for slow and fast winds • VER on the order of 10⁻¹¹ photon cm⁻³ s⁻¹
 - Higher for fast wind peak emission $\sim 2 \times$ that of slow wind
 - Compressed magnetosphere leads to more neutral material within magnetosheath and larger v_{rel}

Imaging the Region

Both models assume a SMILE-like instrument at 303 $R_{\rm S}$ to determine if the magnetosheath can be imaged in a reasonable timeframe SMILE SXI field of view (FOV): $15.5^{\circ} \times 26.5^{\circ}$ (Sembay et al., 2016).

y (R_S) y (R_S) -2020 40 Υ_{κsm}/R_s

Shorter integration times required to pick out magnetospheric variability – need a closer or larger detector!

Conclusions & Future Work

Both models confirm the likely existence of a **significant emission region**; brightest emission is at the nose and reduced emission is present at the flanks:

- Neutral density is the greatest predictor of emission rate, and strongly influences spatial distribution of VER
- Higher collision velocity enhances emission rate e.g. at flanks
- Overall emission rates likely underestimate for physical system

VER comparable under fast and slow solar wind conditions

- Fast wind leads to a higher peak emission rate, but concentrated spatially
- Slow winds results in broader emission region across magnetosheath at a lower emission rate

Magnetosheath imaging possible for current generation of SXI instruments, e.g. SMILE:

- Integration times feasible for broad characterisation of magnetosheath
- Under point source approximation, flux is too low to image short-period variable behaviour; moving close enough restricts viewing picture, but allows spatial resolution

Future work to develop the model should include:

- Consideration of non-Enceladus neutral sources
- Implementation of more species-specific cross-sections
- Apply ray tracing analysis for imaging