Blowing Bubbles in the Galaxy: Chandra Detects the 15t Ever

Resolved Astrosphere Around a Main Sequence G-Star
HD 61005 (aka “The Moth”), an ~100 Myr Old, “Opposite Side of the Local Bubble”, G9V Disk-Hosting Star
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Astrospheres are bubbles
blown out of the Galaxy by the
pressure of a star’s stellar wind
(SW). Their boundaries are
defined where the pressure of
the instreaming galactic
material (due to the star’s
orbital motion through the
galaxy) equals the pressure of
the outflowing SW.




Every single one of the
~100 Billion Stars in our
Galaxy blows an
Astrospheric Bubble
around itself, and also
faces an VLISM headwind
as it plows through the ISM
onits orbit around the
Galactic Center (v, ~ 230
km/sec, P, ~ 250 Myr).




So Far All Resolved Astrospheres have _
been fodund"around YSO, OB or AGB STARS
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Detecting Astrospheres Around Mid-Life, Main Sequence Stars Like the Sun is Hard!
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Parker’s 1960 Heliosphere Morphology Predictions

In order to understand what our own heliosphere
is like, understanding other nearby Local Bubble
system’s astrospheres & astroshocks is very
important - but none of the O/BAGB star systems
with known resolved astrospheres are anything
like G2V Sol.




Parker 1960 (yes, Parker of “Parker Solar Probe® ) using pressure balance

Ngw * Vew? = Nism * Vism? + Bism?/41 + Pisu thermal, fOUnd, with cavity radius ~102 AU,

Solar System with , HD61005with ~103 more SW, but very
Weak SW? B compressed bubble.
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Modern Day : Current Very Different Models for Our
Heliosphere’s STILL Poorly Understood Morphology
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One More Important Piece of Information for this Talk : Stars Have Coronae, or Ultra
Hot (~1 MK), Thin Atmospheres Above Their Surfaces That Emit XUV.

This wide-field photo of totality caught the Kreutz
sungrazing comet, 5008 SOHO.
Lin Zixuan (Tsinghua University, China)

[Comet SOHO-5008

Great 08-Apr-2024
North American Solar
Eclipse Directly
Revealed the Actinic
Light from Our Sun’s MK
Corona.

Observers who photographed the April 8th total solar eclipse received an unexpected bonus when
totality revealed a comet diving toward the Sun, known as a Kreutz sungrazer. But spotting the
death-diving comet required special tricks in observing and image processing.

To detect Astrospheric CXE, the emission measure G¢exg™ gy, Vaw *NyLisMneutras MUst be large!



- |
HD 61005 | || Enter . (aka THE MOTH)! A
ALMA 1.3mm + HST STIS 11| system harboring a Circumstellar
Disk with Marked Structure due to
ISM-Disk Interactions.

(G8.5V, 40 — 130 Myr) ISM Interaction Model Debes 2009
Vism~30 km/sec
Nism~ 25/cm3 wind

%50 AU (1277

Orbit NICMOS

Size of
Neptune’s

HD 61005 Circumstellar Disk = The Moth
Hubble Space Telescope = NICMOS

NASA, ESA, D. Hines (Space Science Institute, New Mexico), STScl-PRC0O8-01
and G. Schneider (University of Arizona) 2007




HD 61005 is located ~110 ly (36 pc) away, on the Other Side of the
Local Bubble, in Puppis (close to the sky direction of Sirius , but ~13x
farther away).

HD61005: G9V
Mass = ~0.9 M,
Luminosity = 0.6 Ly,

% Radius = 0.86 R,
= g e’ Rk Teff = 5480 K
%}0 Local Cloud .
) e g Age =50 - 100 Myr old
% T -bAlp'ha'Cen.t‘a.uri Prot ~ 5 days
2 e g% « o d = 36 pc distant
Local Hot Bubble Dust No known planets (yet)
Clouds Inferred from Earth Bright massive
Based Measurements - . ’ .
(credit: IBEX Mission, circumstellar disk

Linsky/Redfield)
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HD61005 was detected by ROSAT in its first ever all-sky X-ray
survey (1990) with good SNR, but not included in the ROSAT Point
Source Catalogue due to its strange, extended shape.
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Figure 1 (b) - ROSAT All sky survey
(RASS) image of the HD 61005 field
(grey) with XMM EPIC contours overlaid
(Red). The star is in the center of the image
at (07h 35m 47s, -32d 12m 11.5s), in the
clearly large and extended fan-shaped grey
area. It was this reported RASS extension
and asymmetry, coupled with the detection
of the extended dust disk by HST (Figure
1a), that prompted the authors to observe the
system with Chandra. Note also the multiple
faint smudges of reported RASS flux in this
image; we find evidence for a point source
~1.3> N and W of HD 61005 in our ACIS
imagery (Section 2.2).



2MASS J' 2MASS Ks

Archival 2MASS, Chandra/HRC, and GALEX observations of the HD61005 system. HD61005 1s a bright,
unresolved source in each band. The ~12” extent of the NICMOS NIR image could easily fit within the HWHM
resolution of the shallow, off-axis Chandra/HRC measurement.

. HD 61005
HD 61005 ISM Interaction Model ALMA 1.3mrn + HST STIS
(G8.5V, 50 — 150 Myr) ~30 km/sec, 2.5/cm? wind

Debes 2009

Hubble

s
550 AU (12.1")

Archival HST/NICMOS near-infrared imagery of HD61005. (left) The swept-back wings of the outer disk can be clearly seen
in contrast to the bright central flat disk running left-right in the center of the image. Debes+ 2009 model of the system’s dust
structure produced by invoking ISM wind ram pressure perturbations of circumstellar dust orbits. (middle) Close up of
HST/STIS (color) + ALMA imagery (contours) of HD61005 from MacGregor+ (2018), which suggest that there are two
components to the disk populated by both small micron-sized grains (HST) and larger mm-sized grains (ALMA): (1) a confined
planetesimal belt between 42 and 67 AU with a rising surface density gradient and (2) an extended outer halo. For scale,
Voyager 1 has found the heliopause in our L, ~ 10?75 system at ~150 AU. (right) HD61005: Chandra ACIS imagery is an
~10 pixels wide blob. For 0.5" x 0.5" pixels, this is a spherical blob about 5" in diameter, or 5" * 35 pc * 1AU/pc =175 au
across.



We can expect ~“100 Myr Old Sun v

Like Stars (e.g. EK Dra, HD61005 | 1
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We obtained new Chandra ACIS-S observations of HD61005 in Feb 2021.
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X-ray spectra for HD61005, Tau Ceti and Beta Hyi after correction for total on-target integration time,
distance, and ACIS-S Effective Collecting Area (t).

=>~0.1 Gyrs HD61005 is 2-3 orders of magnitude more luminous in the X-ray than 6-8 Gyrs
old Beta Hyi & Tau Ceti, as predicted.



HD61005 is clearly extended in our imagery vs. Chandra archival images of other Sun-
like G-stars.
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Chandra ACIS-S images of Beta Hyi and Tau Ceti vs HD61005, highlighting coronal and astrospheric components.
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Chandra ACIS-S background-
corrected radial aperture
photometry. Two components
are clearly seen: a Point-source
(Stellar Corona) + 1/p Extended
Source (Halo). Halo dominates at
r > 3 pixels.
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Overlay of the new Chandra imaging of HD61005 on HST/NICMOS near-infrared imagery (/eft) and
Debes+ 2009 model of the system’s dust structure (right) produced by invoking ISM wind ram
pressure perturbations of circumstellar dust orbits.

HD 61005 (KOV) ISM Model

Chandra ACIS-S

HST/STIS

ISM Flow

S
550 AU (12.1")

Noteworthy is the spherical symmetry of the x-ray emission, denoting an astrosphere
morphology dominated by the strong stellar wind of the ~ 100 Myr old host G8YV star; the
~100 au radial extent of the extended x-ray emission and the beginning of the NICMOS dust
“wings” (for scale, Voyager 1 has found the heliopause in our L, ~ 10%7-> system at ~120 AU),
and the roots of the Wings at ~ the astropause distance.



Simple Toy Model for HD61005
SW - VLISM Interaction

* Given Pressure Balance ngy * vgy?
2

Heliosphere

— *
— Iism © Vism

o Given I-X,CXE ~ OcxE "~ Dpeutral = Dsw (nminor/ nH) Vsw
% %k
VOlumeinteraction <Ephoton>

* Then, assuming ng,~ 1/r% vigy= 25 km/sec (Debes 2009), (n,,;,,/ny) ~ 1073,
and V,,~ 1200 km/sec for a young G9-star

* Including new Chandra finding constraints : R g osphere™ 100 au and Ly cye ™
1.3 x 10%° erg/sec

* =>We find nyy gy =100 — 300/cm? (~1000x nyysp; sun) aNd Ngy, ~ 2000/cm? at
1 AU from host star (~103 solar)



Conclusions for Chandra ACIS-S Imaging of HD61005
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(G8.5V, 100 +/- 50 Myr) ISM Interaction Model fhandra SR

~30 km/sec, 2.5/cm3 wind
Debes 2009

Xk

Solar System HD61005with ~103 more SW,

> ISM Flow with Weak SW? but very compressed bubble.
550 AU (12.1") ) ) R i R

- The stellar XUV activity and wind for HD61005 should be hot & high, about that observed by
Guinan et al. for EK Dra, as HD61005 has an ~5 day stellar rotation rate. => We find an ~7 MK
corona > 200x more XUV active than the ~1 MK. ~4.5 Gyr old Sun or 6-7 Gyr G8V Tau Ceti.

- X-ray emission is extended out to ~100 au, with a pronounced “Halo” not found in other point-
source G-star observations. The halo’s x-ray spectrum is CXE line dominated, like our heliosphere’s.

- HD61005’ local ISM must be very dense in order for a system with L, ~ 102 Fgy, s, to have an
astropause at only ~100 au. => ps\, 1pe1005 = 100 — 300/cm3 using simple pressure balance, densities
found inside GMC’s like the Local Lynx Cloud (LLC).

[The solar system system TODAY has py sy sun = 0.2/cm3and heliopause at ~120 AU, but would have
a heliopause at ~ 1000 au if the SW was 100x stronger].

- 1st ever spatially resolved G-star astrosphere: Due to its youth and its dense VLISM, HD61005’s
CXE emission measure ng, * vg, * Ny ~ 10°* ng, sun™ Vowsun ™ Nism, sun-

- The resolved Halo does NOT appear to follow the well known disk + fan tail and appears
spherical in nature. This argues that the stellar wind — VLISM interaction is Parker stellar wind
dominated. CXUniverse 18 June 2024



Open Questions: HD61005 Needs Full-Up Heliosphere Modeling (e.g., “Face-On ISM RAM” Geometry)
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Solar System Evolution: At r ~ 100 au, HD61005’s
astrosphere is smaller than our own (r ~ 120)! =>
When HD61005 moves into “normal” ISM space,
its astrosphere will balloon up to r ~ 1000 au (&
ours will shrink down to r ~ 2-5 au when we move
into its cloud as we orbit the galactic center!)
(Opher et al. 2023, 2024)

Search for Other Young G-star Disk Systems?
Nearby, edge-on HD 107146 and HD 202917 seem
promising.
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Is There Hope for an Alpha Cen CXE
Astrosphere Detection With NextGen X-
ray Telescopes? n.,, *v.,*njism/d? = 102 —
103 in solar units for HD61005 & ~1 for
Alpha Cen. So probably not...Procyon?

The “Wings” - are the “swept-back, fine
particle” wings due to disk dust blowout,
ISM sputtering of unprotected dust, or by
exclusion of ISM neutrals? Are they
coincident with the prongs of the
croissant in the Boston groups models?
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If you liked this talk...
look for our 2024 paper!!
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Some Calculations of the Scale of

*

the SW

Pressure of the Heliosphere:
PV =nkT or P=(n/V) kT and
[760 torr =1 atm = 1.01 x 105 Pa, => 1 torr = 133 Pa, 1 Pa = 1/133 torr]

AUETY
Heliopause

So for Density ~ 1 H/cm? at Imillion K Temperature, we have
P=(1 H/ecm3 * 106 cm3/m3) *1.38x10-23*106 deg K = 1.4 x 10-'! Pa [or ~ 1x10-13 torr]

By comparison: Fluorescent light bulb Hg plasma pressure ~ 0.8 Pa = 6 x 10-3 torr

Good rough pump vacuum ~ 1 x 103 torr=1.3 x 10-! Pa

Good turbopump vacuum ~ 1 x 107 torr = 1.3 x 10> Pa= Pressure on Pluto’s surface, 10x Pressure in a Fusion Reactor
Ultra High Lab Vacuum =1 x 10-19to 1 x 10" torr= 1.3 x 10-® Pato 1.3 x 10 Pa

Mass of the Heliosphere:
4nt/3 *<1 H/em3 > * (1.67 x 1024 g/H-atom) * (1.5 x 1013 cm)3 =24 x 101> g =2.4e13 kg
2.4 x 1013 kg 1s the mass of a 2.3 km radius comet of 0.5 g/cm?3 density

Mass Flux into the Heliosphere:

Sun loses ~2 x 10-14 Mg,/yr =2 x 10-1%/yr * 2 x 1039 kg * /(3.1 x 107sec/yr) = 1.3 x 109 kg/sec

4 H/cm3 at 1 AU * (1.67 x 1027 kg/H atom) * 4n*(1.5 x 1013 cm/AU)3 * 450 x 10°cm/sec = 1.3 x 10? kg/sec

1 x 107 kg is the mass of a large comet’s coma, or of an 100 m radius comet-like body, or 500 Olympic swimming pools

Sun masses 3.3 x 10° Mg, 0 Sun loses 7 x 108 Mg,,4/y1, 70% of M, 1n 10 Myrs, ~300 M4, in 4.56 Gyr, the age of
the solar system (at current rates; the Sun’s stellar wind was hundreds of times stronger when it was first born). Stellar

winds from of low-mass stars likes the Sun do not strongly influence their evolution on THE MAIN SEQUENCE. (Pre-

and Post-Main Sequence Stellar Winds CAN cause ~Mg,,, mass losses in Myrs!)
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HD 61005
ALMA 1.3mm + HST

ALMA + STIS +
Chandra ACIS-S
Imaging of HD61005

(w/ ACIS-S at same scale
& coord as ALMA + STIS).

A6 "]

The Chandra x-rays
extend to the base
of the Moth’s
“Wings”.
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Close up of HST/STIS (color) + ALMA imagery (contours) of HD61005 from MacGregor+ (2018), which suggest
that there are two components to the disk populated by both small micron-sized grains (HST) and larger mm-
sized grains (ALMA): (1) a confined planetesimal belt between 42 and 67 AU with a rising surface density
gradient and (2) an extended outer halo interacting with and swept-back by the VLISM. For scale, Voyager 1
has found the heliopause in our L, ~ 10?75 system at ~150 AU. (right) HD61005: Chandra ACIS imagery is an
~10 pixels wide blob. For 0.5" x 0.5" pixels, this is a spherical blob about 5" in diameter, or 5" * 35 pc *
1AU/pc = 175 au across.
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Figure 3(d) — Measured rotation rate vs stellar age for the Sun and several close solar analogues. The solid curve
is a simple power law fit modeling P:o: ~ Age® 6. Figure 3(e) — As measured XUV luminosities for EK Dra, 1! Uma,
n! Ceti, Beta Com, and Beta Hyi, all close solar analogue stars. Notice the factor of ~103 higher flux between EK
Dra (=HD 61005) and B Hyi (= Tau Ceti). After Guinan & Engle (2007).
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| Twisting of Magnetic Field
Lines as the Sun
Differentially Rotates Heats
the Solar Coronal
Atmosphere to ~1 MK
(versus the 5780K surface
temperature of the Sun)
and powers the Solar Wind.
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Stellar Wind (SW) = A flow of gas ejected from the upper atmosphere of a star.
G-type stars like the Sun have a wind driven by their hot, magnetized coronae.
The Sun's wind is called the solar wind. These winds consist mostly of high-
energy (~ keV), fast (200-800 km/sec, or ~0.1% light speed) stream of mostly
ionized hydrogen, helium, and electrons (>99%) that are able to escape the
star's gravity because of the high temperature of the corona.
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