DXL: A SOUNDING ROCKET MISSION TO MEASURE SOLAR WIND CHARGE EXCHANGE

Meng Chiao, Michael R. Collier, Thomas Cravens, Massimiliano Galeazzi, Dimitra Koutroumpa, Kip Kuntz, Susan Lepri, Wenhao Liu, Dan McCammon, Rousseau Nutter, F. Scott Porter, Russell Roberts, Ina Robertson, Steve Snowden, Kayla Spencer, Nicholas Thomas, Dhaka Sapkota, Youaraj Upreti
THE DXL INSTRUMENT

- Sounding rocket mission for the study of the Local Hot Bubble and SWCX
- 4 co-aligned X-ray proportional counters
- >1,000 cm² effective area, 7.5 deg FOV
- C, B, and Be filters
- High response from 40 eV to 10 keV
- 1-D images generated by rolling the payload
- Launched from WSMR, NM on 12/12/2012 and 12/6/2015, from PFFF, AK on 1/16/2018, and from WFF, VA on 1/9/2022
- First Demonstration in Space of Lobster-eye Optics
XMM-Newton has a grasp about 150 times smaller at $\frac{3}{4}$ keV requiring 40,000 s
Suzaku about 2,000 times smaller, requiring 600,000 s of observing time
At lower energy the situation is much worse, in the $\frac{1}{4}$ keV band their effective area
drops well below 100 cm2, making any science there essentially impossible
DXL STRATEGY (FLIGHTS #1 & 2)

- DXL should measure an excess emission due to SWCX from the He focusing cone

Slow scan region
Galactic plane: 36%±5% (±5% systematic error)
Averaged over the whole sky: 27%±4% (±5% systematic error)
Local Hot Bubble the major contributor to 1/4 keV emission
SWCX less than 40% in the 1/4 keV band
THE LOCAL HOT BUBBLE

Fairly constant temperature of the Local Hot Bubble
~0.083keV (9.63E5 K)

THE LOCAL HOT BUBBLE

3D model of LHB

Data From Lallement et al. 2014

FLIGHTS # 3 & 4 SCIENCE GOAL

Measuring the compound cross section with H using the spatial signature of the Cusp
FLIGHTS # 3 & 4 STRATEGY

Payload View

Perpendicular View

WFF ~ 37° N
DXL FLIGHT #4 RESULTS
DXL FLIGHT #4 RESULTS

Count rate vs. Altitude for 4 scans in the lowest energy band

Count rate vs. Altitude for scan #2 for three energy bands

Count rate vs. Altitude for 4 scans in the lowest energy band
The red lines are the field lines defining the exterior surface of the cusp.
THE LOBSTER-EYE X-RAY TELESCOPE (LXT)

Micropore Optics coupled to large area CCD detectors

- Broad energy range 0.1-10 keV
- Large FoV (7.5°×7.5° per telescope)
- Good energy resolution (~100 eV FWHM)
- Moderate Angular Resolution (~ 8 arcmin FWHM)
- Moderate effective area (tens of cm²)
- Compact design with low MOI for rapid repointing (50 cm focal length)

Applications:

- Multi-messenger science
- Transient searches
- Low brightness diffuse objects
Thanks to LXT very large field of view it is possible to observe the whole loop with a single pointing, thus removing cross-calibration issues and minimizing the effect of time varying background.
“That's all Folks!”